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Abstract

It is shown that in the semi-classical approximation of the electroweak sector efaheard
modelthe moduli space of vacua can be identified with the first de Rham cohomology group
of space—time. This gives a slightly different physical interpretation of the occurrence of the
well-known Ahoronov-Bohm effect. Moreover, when charge conjugation is taken into account,
the existence of a non-trivial ground state of the Higgs boson is shown to be equivalent to the trivi-
ality of the electroweak gauge bundle. As a consequence, the gauge bundle of the electromagnetic
interaction must also be trivial. Though derived at “tree level” the results presented here may also
have some consequences for quantizing, e.g., electromagnetism on an arbitrary curved space—time.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider as a specific Yang—Mills—Higgs (YMH) gauge theory the bosonic part of
the electroweak interaction of the standard model of particle physics. Its basic geometrical
objects are given by a S@) x U(1) gauge potentiadk = W+ B € 21(M, R3@R) together
with a complex vector fieldd € £2°(M, C?). Here, M denotes a space—time manifold
which is usually identified with Minkowski spade!-3. Like in perturbation theory, the
physical interpretation of the paiA( @) is that of a “fluctuation of the (classical) bosonic
vacuum” @A = 0, @ = 0) via the known replacement

di—>ds:=d+ A, o~ ¢:=20+ 9, (1)

wherezg € C2is a chosen minimum of the Higgs potenti&) := A|z|*— 12|22 (A, u > 0)
and “d" is the exterior derivative.
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From a geometrical point of view, a (classical) bosonic vacuum of the electroweak inter-
action may be represented by the canonical YMH pair

(00, Vo), (2)
where)) is the canonical mapping
Vo : M — M x orbit(zg), x = (x,Z0) 3)

and g is the flat connection on pr: M x C2 — M associated with the canonical
connection p}g""c on the trivial principal SW2) x U(1) bundle

pry : M x (SUQ2) x U(1)) - M, p=(xg=(w2:81) — X 4)

Here, respectivelytMC is the Maurer—Cartan form on $2) x U(1), pro(x, g) := g and
orbit(zg) ¢ C? denotes the orbit afy with respect to the unitary representatio(g) :=
g(z)gfl) (y € Q). Notice that the specific Higgs potentid}, in the standard model has only

one such orbit that is homeomorphicsd c R4.

The canonical YMH paif2) represents a specific absolute minimum of the energy func-
tional associated with the known YMH acti@ywy = Zym + Zn. Of course, any gauge
equivalent YMH pair contains the same physical information. A question that naturally fol-
lows is how many gauge inequivalent vacua of the electroweak interaction exist and what
is their physical meaning? Another question closely tied to the previous one is: How do
we know that the gauge bundle underlying the electroweak interaction is actually trivial?
In other words, what can we learn from the study of the moduli space of vacua concerning
the topology of space—time and the gauge bundle? At a first glance this question may sound
like being of purely mathematical interest. However, the existence of gauge inequivalent
ground states, and tied to it the topology of space—time and of the gauge bundle, may
also have consequences with respect to the quantization of a spontaneously broken gauge
theory. For instance, when trying to quantize electromagnetism on an arbitrary (globally
hyperbolic) space-time manifol#1 one has to consider the non-triviality ﬁfgeR(M).
However, when seen from a gauge geometrical viewpoint, the Maxwell-Faraday equation
dFeim = 0 becomes an identity (the “Bianchi identity”). That is, the electromagnetic field
strengthFeim € £22(M) is considered as the local pull-back of the curvature of a connection
form w € £221(Q) on the underlying electromagnetic gauge bur@le Tg 1 Q - M.

In other words Fem = dojw, wheres, : M D U, — Q is a local trivialization ofQ.
Therefore, in order to quantize the electromagnetic gauge potedtjais o)« one not
only has to take into account the topology of space—twdut, in particular, the topology
of the electromagnetic gauge bundleln fact, if the latter turns out to be trivial, then every
gauge potentialk € £21(M) is a globally defined object independent of the topology of
space-time.

Thus, also from a physical perspective it seems appropriate to put the above geometrical
interpretation of a vacuum (or its “fluctuation”) in a more general geometrical perspective.
A corresponding discussion of a general (classical) bosonic vacuum can be fdaod in
(for a discussion of the fermionic vacuum, please [444). There, we also discussed the
geometrical meaning of the bosonic (resp. the fermionic) “mass matrix” and the existence of
the “unitary gauge”. For the convenience of the reader we shall summarize in the next section
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the basic geometrical notions used afterwards to prove that in the case of the electroweak
interaction the moduli space of bosonic vacua is non-empty iff the electromagnetic gauge
bundle is trivial. Moreover, in this case the principal @Ux U(1) bundle underlying

the electroweak interaction is also trivial and the moduli space of vacua consists of only
one point, which is represented 6§, Vo) iff the first de Rham cohomology group of
space-time is trivial. Thus, if electromagnetism is supposed to be dynamically generated
by spontaneous symmetry breaking, the corresponding prinigalbundle representing

the electromagnetic interaction must be trivial. Besides the usual assumptions of being
paracompact, Hausdorff, orientable and smooth this statement turns out to be independent
of the topology of space—time and independent of its geometry.

1.1. Terminology

In the following we would like to briefly comment on why it might be useful to use a
global geometrical description of what is usually referred to as an “elementary particle”.
Also, these remarks serve to clarify the physical terminology used in this paper.

In classical physics “particles” are geometrically represented by time-like (future ori-
ented) one-dimensional submanifolds of a given space—titmén contrast, in the semi-
classical approximation of a (quantum) field theoretical description of a “particle” the
latter is usually identified by its state, described by a (quantum) field. Such an identifi-
cation seems inappropriate since, for example, the same particle may approach different
states. In particular, within the realm of gauge theories the state of a particle is supposed
to be a gauge dependent concept and thus is of no direct physical meaning. Moreover,
in a quantum field theoretical description of a “particle” the notion of the latter becomes
even more subtle for particles may be “created”, “annihilated” or “transformed into each
other”. Consequently, physical notions like “mass” or “charge” usually refer to “asymptot-
ically free particles”. However, how one can make the latter geometrically precise within
the context of gauge theories for “freeness” means no interaction and thus seems to be a
gauge dependent concept? Also, in particle physics certain asymptotically free particles
are considered to form a “particle multiplet” which transforms according to some (unitary)
representation of a given “gauge grou@” Again, when seen from a gauge geometrical
viewpoint such an interpretation of the “internal space” always refers to a (local) trivializa-
tion of the gauge bundle with structure groipHowever, since a (local) trivialization of a
gauge bundléP cannot be performed experimentally such a description of asymptotically
free particles within gauge theories seems spurious. Notice that this is quite in contrast
to relativity, where the mathematical concept of a local trivialization has a direct physical
meaning and so the typical fiber of the tangent bundle of space—-time, too. As a conse-
quence, the concept of an asymptotically free particle should be a purely geometrical one.
It seems natural to geometrically describe elementary particles, at least in a “semi-classical
approximation” of a quantum theory, as (isomorphism classes of) Hermitian vector bun-
dles¢ (see, for instancg4]). The possible states of a particle may then be represented by
sections of the appropriate bundles. In contrast to a “particle” the state of the latter can
still be considered as a local concept. The gauge interaction between various particles is
modeled by the assumption that the vector bundles are associated with a given principal
G-bundleP.
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For instance, in the case of the bosonic sector of the electroweak interaction the “particle
content” of the latter is known not to be given bW, B, @) but instead by the “electro-
magnetic gauge bosorlem together with the massive and electrically (un-)charged “weak
vector bosonszZ®, W+ and the “physical Higgs bosordy phys Here,

Aeim = COSOw B + sinfy W, 70 := cosfy W3 — sinfy B,
W= Wi tiW, (5)

with W = (W1, Wa, W3) € 21(M, R3) the “weak gauge boson” anbhy physthe “physical
component” of the “Higgs bosor® = (@g, PH phys € 2°(M, R%. In the semi-classical
approximation a common usage of terminology in particle physics is that physically non-
interacting particles are identified with “free fields” on space—titrigsee standard texts,

for example[1,8], or Chapter 21.3 if13]). However, the definitior{5), and the notion

of a “free field”, can be defined gauge invariantly in general. One may thus ask for the
geometrical meaning of the “particle content”

(Aeim, ZO, Wi, qu,phys) (6)

of the (bosonic part of the) electroweak sector of the standard model.

As it turns out, the “free particleq6) are intimately related to the notion of a bosonic
vacuum of the electroweak interaction. Also, the “free particles” actually have a simple
geometrical meaning. Indeed, we shall show how the particle cof@pran geometrically
be considered as real line bundles over space—time which naturally come with the geometry
of spontaneous symmetry breaking of the electroweak interaction. Moreover, these line
bundles define the extrinsic curvature of the vacuum geometrically considered as specific
submanifolds. As one may expect, these extrinsic curvatures are proportional to the masses
of the bosons.

However, given such a global description of an elementary particle one may ask about
the topological structure of the bundlésSince they are associated bundles, this raises
the question about the topology of the underlying gauge buRdhich, of course, is
closely linked to the topology of space—timé itself. In elementary particle physics one
usually encountersm ~ RL3. Of course, this specific assumption leads to a definite
answer concerning the topologyBfand thus ot. However, as we have mentioned before
when trying to quantize electromagnetism on a general spaceAtinene has to consider
dFeim = 0 which, in general, gives rise only to the local existence of an electromagnetic
gauge potentialeim. On the other hand, iP is supposed to be trivial, then every gauge
potential can be considered as a globally defined object. But what do we know about the
topology of the underlying gauge bundle? Since the latter has no direct physical meaning
it seems inappropriate to make any a priori assumptions with respect to the topolBgy of
Therefore, our “strategy” is the following; the topology Bfis supposed to be arbitrary
but fixed, analogous to the assumption of an arbitrary but fixed space—time background
M. Then, we try to use physically well-established assumptions in order to restrict the
topological structure of both space—time and of the gauge bundle. In the present paper the
physically well-motivated assumptions made, for example, basically consist in the existence
of a non-trivial ground state of the Higgs boson and in the assumption th#éittheector
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bosons of the weak interaction are charge conjugate to each other. As we shall see these
two physical assumptions fully fix the topology of the bundles under consideration.

2. The geometrical set up

In this section we summarize the basic geometrical notions which are used to generalize
(@0, Vo) to the case of arbitrary principal-bundlesP

wp. P —> M, p X (7)

Here,G denotes a finite dimensional compact, semi-simple real Lie group./ahcf) a
smooth semi-Riemannian manifold of arbitrary signature. Topologic&lys supposed to
be paracompact, Hausdorff and orientable. Notice that, like the (semi-)Riemannian structure
gm, the bundle structure @? is supposed to be given but otherwise arbitrary.

Then, a YMH gauge theory can be characterized by the following data

(P, pHs Vh), (8)

wherepy : G — GL(W, C) is a unitary representation anigy : C¥ — R denotes a
G-invariant smooth function that is bounded from below. Moreover, its Hessian is supposed
to be positive definite transversally to the orbit of each minimunivigf Accordingly, we
call such a functiorVy a “generalized Higgs potential”.

Naturally associated with the daf8) are two Hermitian vector bundles: the “Higgs
bundle” &y and the “Yang—-Mills bundletyy = 13 ® ad(P). Here, the Higgs bundle is
defined by

mH Ep = P x,, CV — M, 3=[(p, 2] = 7p(p) 9)

and the YM bundle as the tensor product of the cotangent bufjdbé M with the “adjoint
bundle”ad(P)

TTad . @d(P) := P xaqlie(G) — M, t=[(p, D] — 7mp(p). (10)

The Higgs bundle and the Yang—Mills bundle are regarded to geometrically represent,
respectively, the Higgs boson and the Yang—Mills boson. Accordingly, one may physically
interpret the sections of these bundles as the states of the respective bosons.

Each minimumgzy € CV of the Higgs potential gives rise to a specific fiber subbundle
&orp Of the Higgs bundle called the “orbit bundle” with respect to the mininagmit is
defined by

Torp := Orbit(zo) := P X, Orbit(zo) — M, 3=[(p, 2]~ 7p(p), (12)

whereporh := pH orbitzo) - NOtice thakor, > &, iff z; andzo are on the same orbit. Like the
gauge bundl, the orbit bundle has no direct physical meaning. However, ggge- &n,

any sectiorV of the orbit bundle physically represents a possible ground state of the Higgs
boson. We therefore calt a “vacuum section”. We denote By C G the invariance group

of the vacuum section. It is a closed subgroup of the gauge @ofif’ and may pointwise

be identified with the isotropy groufizp) ¢ G of the minimumz,.



358 J. Tolksdorf/ Journal of Geometry and Physics 51 (2004) 353—-371

Every vacuum section singles out a specific class of connecticRskeor this we remark
that each vacuum sectidnis in one-to-one correspondence to df-feduction” @, ¢) of
the principalG-bundleP (see, e.g.[7]). That is, there is a unique principAl-bundleQ

o Q—> M, g x (12)

together with a bundle embedding Q@ — P (i.e.7p(:(g)) = wo(g) for all g € Q), such
that H ~ I(zp). Indeed, in contrast to the more physically intuitive notion of a vacuum
section the usually geometrical description of spontaneous symmetry breaking only refers
to the notion of a bundle reduction (see, €8,3,9,12).

Note that, in general, the princip&-bundleQ will be non-trivial even if the principal
G-bundlePis equivalent to the trivial one. Of course, the triviality@implies the triviality
of P. Also, any connection o@ generally induces a connection ghbut not vice versa.
A connection4 on P is said to be H-reducible” iff * A is also a connection o@. In this
case we calld compatible with the appropriate vacuum sectidor simple criterion for a
connection to be compatible with a vacuum section is given by the following lemma.

Lemma 2.1. A connection orP is compatible with a vacuum sectidhe I'(&qp) iff the
associated connectiaA € .4(én) on the Higgs bundle satisfies

d,V=0 (13)

with d4 the exterior covariant derivative with respecttb

Proof. Since a connection oR is H-reducible iff the corresponding connection form on
‘P takes values in LieH) the statement follows fror(x) = [(¢(g), Z0)] |q engle: O
We call a YMH pair(®, V) € A(&n) x I'(En) a (classical) “bosonic vacuum” (or, in the
context of this paper, an “electroweak vacuum”Mfflenotes a vacuum section with respect
to some chosen minimugy and® a connection o8y associated with a flat connection on
‘P and which is compatible withy.
The notion of a (classical) bosonic vacuum introduced here indeed generalizes the geo-
metrical interpretation of a vacuum as describeBeation 1Since inthe case diV1, gm) ~
RL3 it follows that both” and Q must be trivial for any vacuum section. The latter may
then be identified with smooth mappings M — orbit(zp). Moreover, any such mapping
is easily shown to be gauge equivalent to the canonical mapfimghich corresponds to
the canonical embedding

Mx H— M x G, (x,h) = (x, h). (14)

In [10] it is shown that one encounters a similar situation in the case whére() = 0.

More precisely, in the given reference it is proved that on a simply connected manifold
M there exists at most one vacuum for each orbit. Moreover, these vacua are all gauge
equivalent to(®g, Vp). It is then a natural question to ask for the structure of the moduli
space of vacua in the case @of(M) # 0. This will be done in the next section for the
particular case of the electroweak interaction.



J. Tolksdorf/ Journal of Geometry and Physics 51 (2004) 353-371 359

We close this section with the remark that with respect to any vacuum séttioe
(realification of the) Higgs bundle decomposes into the Whitney sum of two real subbundles
called the “Goldstone bundlég and the “physical Higgs bundl&}y phys, i.€.

&H = &G D &H,phys (15)

Moreover, since a vacuum section can be considered as a specific embedding of space-time
into the total space of the Higgs bundle, the tangent bundletdbgether with the Gold-

stone and the physical Higgs bundle build a “global 3-Bein” along the vacuum) C

En. In particular, the physical Higgs bundig phys can be identified with the normal
bundle of Orbit(zg) C En restricted toV(M) C Eny. Notice that the 3-Bein is or-
thogonal with respect to the metrigy induced by(®, gm) on Ey. The exterior cur-

vature of Orbit(zg) along the vacuum is proportional to the mass of the physical Higgs
boson.

3. Themoduli space of vacua of the electroweak interaction

The structure of the moduli space of the bosonic vacua is found to be surprisingly
simple in the case of the electroweak interaction. This is so because this interaction
turns out to have some special topological features which we will discuss in this
section.

First, we again summarize the data defining the electroweak interaction as a specific
YMH gauge theory. In this casé®, pn, V1) is given by

e aprincipalG := SU(2) x U(1)-bundleP,

e the unitary representatiopy : G — GL(2,0C), ¢ = (g2, 81)) — g(z)g{l) (with
“hypercharge’y € Q),

e the Higgs potentiaVy(2) := Alz|* — 12|22 (», u > 0).

As already mentioned i8ection 1 this Higgs potential has but one orbit of minima that
is isomorphic toS® c C2. Moreover, it has the special feature of being “rotationally
symmetric”. That is, the Higgs potential can be writtenVas = fy o r, with r(2) =
|z| the radial function andfy € C*°(R,) bounded from below. As a consequence, it
can be shown that there exists a vacuum sectaiff the Higgs bundleéy admits a
non-vanishing section. Moreover, with respect to such a vacuum section the physical
Higgs bundle is a trivial real line bundle. Also, for any non-vanishing secfoof the
Higgs bundle one may always find a vacuum, such thatan be identified with a sec-
tion of the corresponding physical Higgs bundle (see afEdf). In other words, there
always exists a vacuum such thédt is in the “unitary gauge” with respect to this
vacuum.

Next, we prove that in the case of the electroweak interaction the adjoint buan@ie
decomposes into the Whitney sum of two real line bundles and one real vector bundle of
rank 2.

Proposition 3.1. Let(P, py, Vn) be the data defining the electroweak interaction as a YMH
gauge theoryAlso let V € I'(¢orp) be a vacuum section with respect to some minimum
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zo of the Higgs potential. With respect to the vacuum sectidhe adjoint bundled(P),
considered as a vector bungidecomposes as

a(P) = ad(Q) ® (52 ® Ew). (16)

Here &7 and&y, respectivelydenote a real vector bundle of raikand of rank2.

Proof. When considered as a vector bunddg?P) is H-reducible and decomposes as (see

(10])

@ (P) = ad(Q) & &G. 17)
Likewise, the Yang—Mills mass matrix

VMZy ad(P) > ad(P),  t=[(p. D] = VMEy (D) (18)
with VM%), (D) (x) := [(p. ad,-1(M%), (20) adg(D))]|p€H;1(x) decomposes as

WhereV*M?(MG = V*M\Z(M leg has maximal rank. If18) p = :(g)g for arbitraryg €
nél(x), g € GandM2,,(z0) € End(Lie(G))is defined by8(M2,, (z0)(T), T') = 2p},(T)Zo-
pu(T)zo forall 7, T’ € Lie(G). The symmetric bilinear forns on Lie(G) is given by the
most general parameterized Killing form, ap{ denotes the real form of the “derived”
representation (see again, loc sit). Note BWHM\Z(M has constant spectrum and lays within
the commutant of the reduced gauge graugMoreover, the spectrum only depends on the
orbit of zg and not on the vacuum sectidhchosen. From the above follows that one can
decompose the Goldstone bunéiginto the eigenbundles of the Yang—Mills mass matrix.
Since the latter commutes with the (representation of the) electromagnetic gauge group,
the spectrum oTi*M\Z(M consists of maximally two different eigenvalueg, my € Ry. If

we denote by the restriction of the real form gfy to the typical fiber of the Goldstone
bundle, thenog(h) = A @ (1) for all » € H (whereA € SO(2)). Therefore, the Gold-
stone bundle decomposes into the Whitney sum of a real rank 1 vector yndidich
corresponds to the eigenvalwe,, and a rank 2 vector bundgy, which corresponds to the
eigenvalueny of the Yang—Mills mass matrix. O

The V-induced isomorphisn{17) can be considered as a geometrical variant of what
is called the “Higgs Dinner” (sef5]). As a consequence, in the case of the electroweak
interaction the Yang—Mills bundle decomposes as

EvM = Eeim ® Ew= @ £50), (20)

wheregeim 1= 73 © ad(Q) geometrically represents the electromagnetic gauge boson and
£,0 = 1)) ® &z the massive electromagnetically neut#l vector boson of the weak
interaction. Note thadd(Q) and&; are trivial, for they are “uncharged” (i.e. they carry the
trivial representation of the electromagnetic gauge grdp

The rank 2 vector bundle

Ews ==y ®&w (21)
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geometrically represents a massive electrically charged vector boson. Indeed, one may nat-
urally identify the real vector bundigy of rank 2 with the complex line bundle associated

with the electromagnetic gauge bundlvia the fundamental representationff Phys-

ically one can thus identify21) either with theW*- or with the W—-boson of the weak
interaction. Becaus& € SQO(2) has no real eigenvalues the real vector buggleloes not
naturally decompose into two real line bundles that geometrically represéfitithand the
W~-boson. The motivation for nonetheless identifying: with either of the well-known
massive electrically charged vector bosons is as follows: considered as a complex vector
bundle of rank 2C ® &y decomposes into

CR&w =éw+ ®Ew-- (22)
Here, eithety+ is assumed to carry the fundamental representation of the electromagnetic
gauge group and thefy- = &y+ or vice versa. Both complex line bundles are also

eigenbundles of the Yang—Mills mass matrix with respect to the eigenvalueSincesy
carries the fundamental representation of the (real form of the) electromagnetic gauge group
one may naturally identifgy either with&y,+ or with &y-.

As mentioned before, to geometrically represent bothwhe and theW —-boson as
subbundles of the Yang—Mills bundle one needs additional structure. Physically, this addi-
tional piece of input arises from the assumption thatittebosons are charge conjugate to
each other. Since in the case at hand charge conjugation is the same as complex conjugation
on the complex line bundlgy, charge conjugation geometrically means that there exists
a real line bundle such that its complexification eqals In other words, to assume that
the W*-bosons of the weak interaction are charge conjugate to each other is the same as to
assume that there exist real line bundigs ~ &w,, such that

Ew = Ew, ® Ew,. (23)

In this case, the Yang—Mills mass matt&M?,M together with the real structuggcomplex
conjugation) orfy permits to decompose the Yang—Mills bundle into the Whitney sum of
four real line bundles

Evym = eim D (520 ® Ewy, D Ewy), (24)
where
§W+ =§W1€9i5w2, SW’ =§W19ifwz- (25)

Note that it is a well-established empirical fact that the electromagnetic interaction is in-
variant with respect to charge conjugatibtherefore, to assume the existence of charge
conjugation is physically well motivated. The point here is that charge conjugation comes
within the bosonic sector of the standard model since spontaneous symmetry breaking not
only creates massive but also charged bosons.

1 That is, the electromagnetic interaction does not permit to absolutely distinguish between particles and
anti-particles.

2 By “charge” we always mean “electromagnetic charge”. We carefully distinguish between the notions of
“charge” and “gauge coupling constant”. The former is a dynamically conserved quantity due to Noether’'s theorem,
whereas the latter is conserved by construction (it simply parameterizes the most general Killing forg@i. Lie
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Of course, the decompositi¢R5) is the geometrical analogy to the usual complex linear
combination of the electroweak bosons found in the literature on the standard model (see,
Eqg. (5). Like in the local description the global decompositi(®b) is unique, i.e. the
correspondence betweéfy+, &w+) and (§w,, £w,) IS one-to-one. Indeed, we have the
following lemma.

Lemma 3.1. On the complex line bundlgy there exists a complex conjugation iff it is
trivial .

Proof. The statement follows from the fact that a complex vector bubdferank N pos-
sesses a complex conjugation (i.e. a real structure) iff all of its odd Chern ctagsg®) €
Hﬁ’gf{z(/\/l) vanish. Though this is hard to prove in general, for= 1 the proof is ele-
mentary. Indeed, lety be trivial. Then, the structure group can be reduced to the identity
andé&w possesses a canonical complex conjugation. If we let the complex line kiyndle
be equipped with a complex conjugatidry is the complexification of a real line bundle.
When considered as a real vector bunglie decomposes into the Whitney sum of two
real line bundles. However, since all one-dimensional representations(8j &f@ trivial

it follows that each of the real line bundles is trivial. O

As aconsequence we conclude that with respect to a bosonic vaéyunthe Yang—Mills
bundle of the electroweak interaction reads

4
Eym @‘L’;\kﬂ . (26)

Next, we show that this fully fixes the topological structure of both the electromagnetic and
the electroweak gauge bundle.

Proposition 3.2. The gauge bundles underlying the electroweak interaction and electro-
magnetism are trivial

Proof. Since&y is a complex line bundle carrying the fundamental representation of the
electromagnetic gauge group its frame bundle can be canonically identifie@w@mce

there exists a complex conjugationfniff &y is trivial, the principal = Ugim(1)-bundle

Q must also be triviaf. Consequently, as an extension of the electromagnetic gauge bundle,
the principal SW2) x U(1) bundle” must also be trivial (see our corresponding remark of
the last section). O

As a consequence, we conclude that Wi€-vector bosons of the weak interaction are
charge conjugate to each other iff the electroweak gauge bundle is trivial. In what follows

3 Because of the tensor product with the cotangent bundle, the Yang—Mills biypglis always considered as
a real vector bundle. Thus, to consider the Yang-Mills bundle as the tensor prodgyjctath (22) would not
make sense.

4 Here, the structure group of electromagnetism is defined by

Ueim(1) ~ I(z0) = {h = exp@[T + yiD|T = T(z0) € su2), tr((T + »i]?) = —1,6 € R}.
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we will slightly change our argument and present two alternative proofs of the triviality of
the electroweak gauge bundle. The first proof refers to the existence of a bosonic vacuum
(6,Y). In contrast, the second proof only refers to the existence of a non-trivial ground
stateV € I'(&qrp) Of the Higgs boson.

Proposition 3.3. The electroweak interaction admits a bosonic vacuum iff its underlying
gauge bundIéP is trivial.

Proof. Of course, if the principal S(2) x U(1) bundleP is assumed to be trivial, then

the YMH pair (@, Vo) will serve as a vacuum for all minimz € C2. Now, let(©, V)

be a vacuum with respect to the data defining the electroweak interaction as a YMH gauge
theory. Then, a principdleim(1)-bundleQ together with a bundle embedding @ — P
uniquely corresponds fd such that*® is also a flat connection on the reduced bur@le

Thus, the first Chern clagg(Q) € ngR(M) of the electromagnetic gauge bundle must
vanish. Since principal/(1)-bundles are classified by their first Chern class it follows that

Q must be trivial. Since the electromagnetic gauge budllie regarded as a reduction of

the electroweak gauge bundk the latter must be also trivial. O

Like in the case of the assumptian (M) = 0 the above given argument makes use
of the existence of a flat connectiehon P. While physically motivated, this assumption
turns out to be mathematically very restrictive. However, taking charge conjugation into
account, we may draw the same conclusion as above by only referring to the existence of a
non-trivial ground state of the Higgs boson.

Proposition 3.4. The Higgs boson of the electroweak sector of the standard model possesses
a non-trivial ground state iff the electroweak interaction is geometrically modeled by the
trivial principal SU(2) x U(1) bundle

Proof. Again, if the electroweak gauge bundiReis supposed to be trivial, then every
minimumzy € C2 gives rise to a canonical section of the (also trivial) orbit bundle. To
prove the converse, I8t € I'(¢qrp) be a section of the orbit bundle with respect to some
chosen minimunzg € $3. Also, let(Q, ) be the corresponding electromagnetic reduction
of the electroweak gauge bundk Again, the isomorphism class of the electromagnetic
gauge bundle is fully determined by its first Chern clags(Q) € ngR(M) (cf., for
instance, appendix ¢5]). Therefore, electromagnetism is invariant with respect to charge
conjugation iffc1(Q) = 0. O

Even though it only refers to the existence of a non-trivial ground state of the Higgs boson
the above result also implies, of course, the existence of a bosonic vacuum as, for instance,
the canonical one represented by the YMH pélg, Vo). Our main theorem then says that
in the case of the electroweak interaction this kind of a bosonic vacuum is in fact the only
one, provided thaH(}eR(M) = 0. The proof of this statement makes use of another special
feature of the electroweak interaction.
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Theorem 3.1. Let(P, pon, VH) be the data defining the electroweak interaction as a YMH
gauge theoryThen the corresponding moduli space of bosonic vafllg, is an affine
space with vector spacH(}eR(M).

Proof. According to the above propositions we already know that the moduli space of
bosonic vacua is non-empty iff the electroweak gauge buRdlerivial. As a consequence,
every vacuum sectiol can be identified with a smooth mapping M — orbit(zp). In

[10] it was shown, however, that in the case of the electroweak interaction the principal
H-bundle

G — orbit(zg), g g20 27)

is also trivial. Therefore, every smooth mappingossesses a smooth ljit: M — G,

such thatv(x) = y(x)zp. In other words, every vacuum section is gauge equivalent to the
canonical vacuum section. Moreover, since the affine spadé-fducible connections

A on P can be canonically identified witfe1 (M) it follows that each flat connectio®
uniquely corresponds to an eIementIe)jeR(M). If the latter is trivial, then® is gauge
equivalent to the canonical connecti®g and the moduli space of bosonic vacua consists
of at most one point represented by the canonical Yang—Mills—Higgs @ainj). O

We may thus summarize our main result by
Myac >~ H&ER(M) (28)

iff the electroweak gauge bundi@ is trivial. This in turn is in one-to-one correspon-
dence with the assumption of the existence of charge conjugdtidrocally, the rela-
tion (5) between the “interacting fieldsW(, B, @) and the “(asymptotically) free fields”
(Aeim, Z%, W=, @H phys) IS unambiguous. However, whether this holds also true when seen
from a global perspective depends on the structure of the moduli Sagef electroweak
vacua.

LetA : M — M x M be the diagonal embedding— (x, x). Since the structure group
G = SU(2) x U(1) of the electroweak gauge bundhds a direct product one obtaihs

P = A*(P2 x P1). (29)

Here, respectivelyP; and P, are appropriate principdl(1) and principal SW2) bundles
over M, and A*(P2 x P1) means the pull-back bundle @ x P; with respect toA.
According to the Higgs dinn€L7)with respectto an electroweak vacuu@ V) € A(&y) x
I'(¢y), we obtain the following two orthogonal decompositions of the adjoint bundI®)
(and thus of the Yang—Mills bundgv)

ad(P) = ad(P1) ® ad(P2) ~ ad(Q) D &z ® &y . (30)
Because ofy C ad(P>), there is a unique real line bundig, C ad(P>), such that

ad(P2) ~ &Ew @ éw;,. (31)

5 | would like to thank E. Binz for a corresponding hint.
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The “electroweak mixing angledy of (5) is geometrically represented by the isometric
isomorphism (over the identity afv)

ad(P1) @ éws =~ ad(Q) ®éz. (32)

Note that both sides 2) are orthogonal complements & C ad(P). Also note that
the isomorphisn(32) does not take into account the triviality of the electroweak gauge
bundle. The triviality ofP only corresponds to the last relation(6j which is geometrically
described by25). Of course, the isomorphis(B82) only depends on(p, V)] € Myac.

If space—time is assumed to be simply connected, then, up to gauge equivalence, there is
at most one non-trivial bosonic vacuum. This, of course, holds truéforgy) ~ RL3,
usually encountered in particle physics. This also fits in with the corresponding results
presented if10] for general YMH dataP, pn, Vi), where, we showed that; (M) = 0
implies that the moduli space of bosonic vacua consists of at most one point. In the case
considered in the present paper, however, the topology of space—time is two-fold related
to the bosonic vacua; the existence is tiedH@eR(M), whereas uniqueness is related
to H&eR(M)- The non-triviality of the latter may physically be interpreted in terms of the
Ahoronov-Bohm effect. The anholonomy of the electron’s phase uncovers the non-triviality
of the electroweak vacuum.

4. Asymptotically free particles

In this section we summarize the geometrical meaning of the physical notion of a “free
particle” in the realm of gauge theory. The motivation for this is as follows (see also our
introduction): on the one hand, the notion of a free particle seems basic for the interpretation
of “mass” and “charge” of an elementary particle. Also, in the case of perturbation theory
this notion is crucial. On the other hand, the notion of “freeness” in this context refers to
“non-interaction” and thus seems to contradict the dogma of gauge independence. How-
ever, the geometrical description of spontaneously broken gauge theories presented here
permits to also describe the notion of a “free particle” in purely geometrical terms. Thus,
the spontaneous symmetry breaking of the electroweak interaction permits the geometrical
combination of the notion of a “free particle” with its “mass” and its “charge”.

For this lett € [0, 1]. A one-parameter family of Yang—Mills—Higgs paitg;, ®;) €
A(&n) x I'(&R) is called a “linear fluctuation” of a bosonic vacuum (pai#), () provided
that

A=0+1A-0), & =V+1d. (33)

Here, A € A(&n) is a connection associated with a principal connectiorPamhich is
non-compatible with the vacuun® e I(&) is a section in the unitary gau§e,e. ®
uniquely corresponds to a secti® phys € 1(6H,phys). Of course, the definitio(83)is the
geometrical analogy t¢l).

6 Despite the terminology used the unitary “gauge” is in fact not a choice of gauge. Instead, it refers to a specific
choice of vacuum section adapted to the secffamder consideration (s¢£0]).
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With respect td®, V) the connectiomd uniquely corresponds to a sectidne I'(éym).
Moreover, because of the decomposit{@6) we have

A= Aeim+ Z° + WT, (34)

whereAgim € INéeim) = 2Y(M), Z° € IE,0) =~ QY M) andW* e MEy+) ~ 21 (M).
The Euler—Lagrange equations of the Yang—Mills—Higgs functi@rgh with respect
to the fluctuation(A,, @,) up toO(z) yield the well-known “free field equations”

§dAem=0,  8dZ°4+m%2z°=0,  sdWE+m3wEt =0,
8 ddy,phys + ma,physch,phyS =0. (35)

Note that these second order equations are indédéavariant (but notG-invariant) and
thatsZ0 = sW* = 8®n phys = 0 for reasons of consistency. Here, “d” denotes the exterior
covariant derivative with respect to the trivial connectiodf, its covariant co-derivative
andmp phys € speu‘(V*ME') the “mass” of the physical Higgs bos&n/yhereV*Mﬁ €
I'(End(E})) is the Higgs mass matrix (cfL0]). Also note that

SAWT +m2, Wt = J(sdW™ + m2,W™). (36)

Since, with respect to any geodesic coordinate system (local “inertial system”), the prin-
cipal symbolssp, of the above second order differential operators asymptoticatly 0)
equals the total symbots, one may consider the above secti¢d4) and® = @y physas
geometrically representing states of asymptotically free particles (in semi-classical approx-
imation) that are represented by the corresponding (trivial) line bundles] t-ets d + d§

be the covariant wave operator (“d’Alambert operator”) with respect to the canonical con-
nections on the trivial line bundles representing, respectively, the pgtpthe massive

and (un-)charged vector bosons of the weak interacfign £+, and the physical Higgs
bosoné phys Also letCT (M) c T* M be (pointwise) the future oriented part of the light
cone that is defined by the Lorentz structgfg. Then, for allé € CT (M) the free field
equations (35ndeed imply the well-known dispersion relation between mass, energy and
momentum of a non-interacting point-like particle

0 : &eim,
o(—0)(©) Z opr(—DN (&) = gm(E &) = | m20. m3, 1 50, Gy, 37)

2 .
My phys - &H.phys

w, n

Here, %" means “with respect to any geodesic coordinate system”.

While the local form 0{35) and (37¢an be found in almost any text book of quantum field
theory we summarized them here to put emphasis on their geometrical content. In fact, the
first equality of the relation€37) might serve as a geometrical definition of “freeness”, the
second equality combines the notions of particle and of field and the third equality indicates
the geometrical background of the former two equalities in the realm of (spontaneously
broken) gauge theories. Notice that the right-hand side of the dispersion rel2fipis

7 In the case of rotationally symmetric Higgs potentials the rank of the physical Higgs bundle is equal to 1,
which equals the rank of the Higgs mass matrix.
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fully determined by the sectiong M2,, € IEnd@d(P))), V* M3 € I'(End(En)) together
with the assumption that electromagnetism is invariant with respect to charge conjugation.
That the spectrum of these sections is well defined (i.e. constant and independent of the
vacuum section chosen) is part of the mathematical structure of spontaneously broken gauge
theories. The appropriate physical interpretation of the spectrum, however, is motivated only
by the first two equalities on the left-hand sidg(37).

We close this section with a discussion on the geometrical meaning of the physical
particles(6) of the electroweak interaction. For this we consider the Higgs busadbes a
real vector bundle of rank 4. Each YMH pdit, @) yields a specific embedding @# into
the total spacéy of the Higgs bundle and a specific splitting of the tangent bunglef
Ey into its horizontal and vertical part

™H = by @ vy. (38)

Moreover,(gum, A) turns Ey into a (semi-)Riemannian manifold of dimension 4 divh
such that the splitting38) becomes orthogonal.

Let(®, V) be an electroweak vacuum am, (@) be a (linear) fluctuation thereof. We call
Mphys := V(M) the “physical space—time” with respect to the vacuam))). Accordingly,
we denote by the (pseudo) metric oBy with respect tagm, ©). Because oforp C &H
one obtains the following orthogonal decompositions aldrghys

TH |M,phys: Torb|M,phys€B Vorb|M,phys
> horblM, phys @ 115G IM, phys @ T5EH, physiM, phys
>~ ™™, phys @ 7T>’|-<|EZ|M,phys@ ﬂﬁéWﬂM,phys
DTHEW, M, phys D T11EH, physiM, phys (39)

Here, respectivelytor, andvgrp denote the tangent and the normal bundle of the orbit bundle
andnyv physis the tangent bundle of the physical space—time.

Correspondingly, forevery = (V(x), w) € TEq there are real constanitgm, Ao, A1, A2
andiy physsuchthatv canbe written in terms of the solutions of the free fexdgiations (35)

w = deimT(V 0 1) (w) + AoZ°(w) + AW (w) + 22W2(w) + At phys PH,phys(x)-
(40)

Here, for instanceZ®(w) = pf, (7}, ZX%(w))V € TEx|m phys €tc., andoj, := don(e) is the

(real form of the) induced representation on(G8. Notice that we have made use of the

Higgs dinner(17)in such a way that}; Z° € 21(Ey, ad(P)) and that the gauge grogp

of the electroweak gauge bundle naturally acts from the right on the orbit bundle.

As was shown inf10] the restriction toM phys of any compatible connectiqdeim onéy

coincides with the canonical “connection” that is defined by the vacuum ségtibimat is,

if we denote b)gog'lm the horizontal projector oty with respect to the connectiof, then
Peimlvn (W) = dV(x) (drrn (V(x))w) (42)

for all x € M andw e Ty Ex. Moreover, with respect to the decompositi@4) any
connection4 on the Higgs bundle can be written as

A=0+A =Aem + Ac. (42)
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Here, Aeim = © + Aeim andAg = Z° + W1 + W2, Then, the horizontal projector with
respect to an arbitrary (associated) connectloa A(&y) reads

KJE = B’Jle_llm +Ac (43)
and thus
©H M. phys(w) = TV o 1) (w) + Ag(w) (44)

forall w = V(x),w) € TEy.
Since the decompositiof39) is orthogonal with respect tgq one obtains for ally; =
V), w;) € TEy (i = 1, 2)

gi M. phys(w1, w2) == KH(B’JX|M,phys(w1), KJXIM,phys(wz)) + mgm (w1, w)
= gHIM,phys(w1, w2) + kH(Ac(w1), Ag(w2)), (45)

where, respectivelypx isthe vertical projector that is defined @B8)andky is the Hermitian
form on the Higgs bundle.

The relation(45) shows that the massive weak vector bosari§ W*) correspond to
normal sections aMphyswhich yield a “fluctuation” of the (pseudo) metgeg;. In contrast,
the massless photafigi, only gives rise to a change @fy off the physical space—time
Mphys Note that, when restricted t01pnys, the connectiomem is flat. In particular, one
obtains ¢ ¢mV = 0 and thus

daV = Ac. (46)

We stress that it is this relation between an arbitrary connection on the electroweak gauge
bundle” and the electroweak vacuum that yields a non-trivial Yang—Mills mass matrix
(18).

5. Remarks

In the following we give some comments on the results presented.

The presented classification theorem concerning the bosonic vacua in the case of the
electroweak interaction can be generalized to more general YMHBatsy, Vi), whereby
the “little group” H is supposed to be given either by1l), or by SU2). The general Higgs
potential is, again, assumed to be rotationally symmetric.

In the slightly more general case with = U(1), the moduli space of bosonic vacua can
be identified with

Myac = Hier(M) x #Orh, (47)

where #Orb denotes the number of orbits.
For instance, in the case of a “sine-Gordon”-like Higgs potential

2
Vi(2) = %(1— cos(A|z))) (u.x > 0), (48)
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the moduli space of bosonic vacua reads
Myac = Hisr(M) x Z. (49)

In the case where the isotropy group of a minimegf a general Higgs potential can be
identified with SU?2) one obtains

mvac == m X #Ol'b, (50)

whereft is the moduli space of flat S@)-connections on the trivial principal SR)-bundle
over space—timg.

The results presented imply that the set of non-vanishing sections of the Higgs bundle
is in one-to-one correspondence with the non-vanishing smooth real-valued functions on
space—timeM, i.e.

I (&n) = I'én) \ {0} = C*(M) \ {0}, (51)

whereQ (resp. 0) is the zero section (resp. zero function)\n From Theorem 3.1it
follows that the Higgs bundle is trivial and therefdréy) ~ $29%(M, C?). If one identifies
C2 ~ H with the quaternions via = (z1, z2) — ¢ = z1 + z2j, then one may make use of

the polar decomposition for non-zero quaternigns | ¢|| exp(¥n) (n € H,n? = —1) to
show thatd € I'*(&n) is gauge equivalent to the mapping
M — Epy, x = (x, [|@(x)||€0) (52)

with eg := zo/||1z0|| € S3.
Accordingly, a section of the physical Higgs bunéigpnys reads

PHphys: M = Enphys x> (x, [@)ID, (53)

where we have identifie®®* > Wh,phys := Reg with R. Moreover, with help of this
identification the free field equation for the physical Higgs boson is reduced to the ordinary
Klein—Gordon equation for the functign:= || @||.

The mapping52) is known in physics as the “Higgs boson in the unitary gauge”. As is
well known, this terminology refers to the fact that the “phase” of a particle is unphysical and
can be thus “gauged away”. In fact, when considered as a fietdR® c H geometrically
corresponds to a section of the Goldstone bugglé-or the above given argument which is
used in physics to show the existence of the unitary gauge in the electroweak interaction and
which leads t@g51)it seems crucial that the “phase of the Higgs boson” can be identified with
an element of S(?) c G. However, this turns out not to be the case, actually. Indeed, the
isomorphism51) only depends on the structure of the Higgs potential and not, e.g., of the
simple structure of)tyac. In particular, the existence of the unitary gauge does not depend
on the triviality of the Higgs bundle. For example, in contrast to the above given argument
(which only works in the case whefis trivial), the isomorphisnt51) always holds true
for rotationally symmetric Higgs potentials. In this case, the physical Higgs bundle must
be necessarily trivial for every vacuum section and thus @8dgenerally holds true (cf.

[10]). For rotationally symmetric Higgs potentials the question about the existence of the
unitary gauge is related to the question whethiég) is empty or not. But this is basically
the same as to ask about the existence of vacuum sections which spontaneously break the
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gauge symmetry. Therefore, the assumption ftfg€) # @ is physically well motivated.
The results presented here with respect to the electroweak interaction show that in the case
of ordinary electromagnetisth™ (&) # @ is the same as the triviality of the electroweak
gauge bundle (sderoposition 3.3

Although, in general, the notion of “free particles” depends on the gauge ¢fsy)] <
Myac Of electroweak vacua, the geometrical interpretation of the particle content of the
electroweak interaction holds true for all vacua. Moreover, the rel@i6jyemains intact
for arbitrary connectionglem. It only makes use of the compatibility conditi¢h3) and
the triviality (41) of Aeim along the physical space—timetpnys Notice that the latter
geometrical property of ai/-reducible connection guarantees that the spectrum of the
bosonic mass matrices is constant. Accordingly, the Higgs diiii¢also works in the case
when the gauge bundpossesses no flat connections. This remark becomes important, for
example, when non-trivial/(1)-reductions (resp. S@2)-reductions) ofP are considered.
We close this section with the remark that the intrinsic geometry of the physical space—time
Mphysis the same as that of the “naked” space—titeWe summarize this by saying thatin
the case of ordinary electromagnetism the structure of the moduli space of the electroweak
vacuaiyac only depends on the topology of space—time but not on its geometry. This,
however, may change for non-trivial vacua.

6. Conclusion

In this paper we have discussed the moduli space of bosonic vacua of the electroweak
interaction on “tree level”. We have proved that the corresponding moduli space is either
empty or an affine space that can be canonically identified with the first de Rham cohomology
group of space—time. We have shown that, when charge conjugation is taken into account,
the existence of non-trivial ground states of the Higgs boson is equivalent to the triviality
of the electroweak gauge bundle. For this, however, it is crucial that spontaneous symmetry
breaking of the electroweak interaction not only yields massive but also electrically charged
bosons. It follows that the electromagnetic gauge bundle must be also trivial. For this
reason one may ask about the existence of magnetic monopoles within the realm of the
standard model. Basically, there are two answers to this question: on the one hand, one
may consider a magnetic monopole as a physical object in its own which is independent
of the standard model. This, however, raises the question of the physical meaning of the
underlyingU(1) gauge bundle of the monopole and its relation to Dirac’'s quantization
condition of electric charge. On the other hand, since a monopole is assumed to be massive
and related to electromagnetism it seems far more natural to consider it as a possibly
non-trivial electromagnetic reduction of the electroweak interaction. In this case, amonopole
is not considered as a separate particle but as a certain ground state of the Higgs boson which
is gauge inequivalent to the ground state usually encountered in perturbation theory (i.e. to
Vo). In any case, the existence of a monopole field would spoil the symmetry under charge
conjugation. Since the latter has been shown in this paper to be intimately related to the
structure of the moduli space of electroweak vacua, it is natural to complete our discussion
on the geometrical structure of the electroweak interaction by considering the case where
charge conjugatioty is not assumed to exist. This will be done in a forthcoming paper.
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